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Modulated Phases and the Mean-Field Theory 
of Magnetism with Competing Interactions 

P. J. Forrester 1'2 and Colin J. Thompson 1 

Received July 23, 1987; revision received February 2, 1988 

The mean-field theory of an Ising magnet with infinitely weak, infinitely long- 
range potentials of arbitrary sign is presented in terms of a variational principle 
for the magnetization. Previous studies of the theory have revealed 
paramagnetic, ferromagnetic, and modulated phases. For a particular choice of 
potential, which is an obvious continuous version of the between-plane ANNNI 
model interaction, exact solutions of the stationary condition implied by the 
variational principle are obtained. This leads us to formulate a trial 
magnetization to well describe the modulated phase in general. To illustrate the 
utility of the trial magnetization, both analytic and numerical calculations are 
performed, which determine the wavenumber in certain portions of the 
modulated phase for the above-mentioned potential. 

KEY WORDS:  Mean-field theory; variational principle; modulated phase; 
ANNNI model. 

1. I N T R O D U C T I O N  

Throughout the development of statistical mechanics, mean-field theory 
has been of both practical utility and theoretical firmness. The mean-field 
approximation often predicts qualitatively correct information regarding 
the phase diagram of a model system, thus providing a theoretical predic- 
tion with which to compare experimental data. On the other hand, much is 
known rigorously under what conditions the mean-field theory can be 
exact. 
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One such rigorous result is that of Lebowitz and Penrose. I~l They 
showed that the van der Waals mean-field theory is exact for infinitely 
weak, infinitely long-range potentials of the Kac type 

-TvV(~r) (1.1) 

where one takes ~ ~ 0 + after the thermodynamic limit. As well as an 
integrability constraint on V, one of the key conditions is that V be 
everywhere positive (purely attractive potential). Gates and Penrose ~2) 
investigated the case where this latter condition is relaxed. They found that 
if V is such that its Fourier transform 

19(u) = fR~ dx V(x) exp(2nix �9 u) (1.2) 

has its maximum for some u ~ 0, then the van der Waals theory is violated. 
Related to this result is the experimentally comparable mean-field 

calculation of the phase diagram of the axial next-nearest neighbor Ising 
(ANNNI) model ~3"4) (see refs. 4 for review). In the three-dimensional case, 
on a simple cubic lattice, the original model consists simply of 
ferromagnetic nearest neighbor interactions J0 > 0 within planes. However, 
between planes there are both nearest neighbor ferromagnetic couplings, 
J1 > 0, and next-nearest neighbor antiferromagnetic couplings, 
J2 = - x  J1 < 0. A mean-field theory is constructed by neglecting the fluc- 
tuations in the layer magnetizations. This leads to a one-dimensional local 
mean-field theory, with couplings between the nearest and next-nearest 
mean layer magnetizations. As x increases, the Fourier transform of the 
potential exhibits a maximum at nonzero u. The theory predicts three 
phases: paramagnetic, ferromagnetic, and modulated, separated b y - a  
Lifschitz point. The modulated phase itself contains an infinity of phases, 
which can be broadly categorized as having wavenumber commensurate or 
incommensurate with the lattice spacing. 

An obvious problem is presented: connect up these two studies to 
develop an exact mean-field theory of magnetic systems with competing 
interactions. This task was initiated in the first paper of this series. ~s) 

Consider a one-dimensional Ising model of N spins /~i, i = 1, 2,..., N, 
with interaction energy 

E { ~ } :  - ~ ~,V(71i-j l )~,& (1.3) 
l <~i<j<~N 

and assume only that V{x) is symmetric, bounded, and Riemann-integrable 
over any subinterval of the real line. Then in the mean-field limit (7 ~ 0 + 
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following the thermodynamic limit) the free energy @ is given by the 
variational principle ~5) 

-/3@ = max lira fM{m(x)} (1.4) 
{m(x )}  M ~ 

The m(x), which are magnetizations, have the restriction 

-1  <~m(x)<~ 1 (1.5) 

and the functional fM is defined by 

f M{m(x) } = E, {m(x) } + Ez{m(x) } (1.6) 

where 

= ,LImI Im(, 

E2{m(x)} = - ( 2 M )  -1 dx .1 + log 1 
M 2 

(1.7) 

q 2 

The condition for an extremum implies the nonlinear integral equation 

re(x) = tanh ~ dy V(x-  y) re(y) (1.9) 
- - c o  

After presenting these exact solutions and thus deducing a general 
trial magnetization in Section 2, we proceed in Section 3 to consider the 
general properties of the latter. In particular, we consider the 

{ ~ ,  Ixl ~c~ (1.10) V(x) = J2, ~ < Ixl < t 

This can be linearized at the boundary of the paramagnetic region of the 
phase diagram, revealing a ferromagnetic or modulated phase according to 
whether the maximum of l;'(u) [(1.2) with d =  1] occurs for u = 0  or u r  
respectively. 

In this paper we complete the study by providing a trial magnetization 
m(x) from which the wavenumber in the modulated phase is readily 
computed. In fact our ansat2 is modeled on some exact solutions of the 
nonlinear integral equation (1.9) for the choice of potential (an obvious 
continuous generalization of the discrete ANNNI  potential) 
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paramagnetic-modulated and ferromagneti~modulated phase boundaries, 
and the low-temperature limit. In Section 4 the particular potential (1.10) is 
reconsidered, and it is shown that in the low-temperature limit the 
variational equations are quadratic, and thus can be solved analytically. 
We then present the results of a numerical study of the variational 
equations in the purely antiferromagnetic case [ ~ = 0  in (1.10)], thus 
obtaining explicitly the variation of the wavenumber from the Lifschitz 
point to the ground state. In conclusion, the modulated regime of this 
continuous mean-field theory is contrasted to that of the discrete mean- 
field theory of the ANNNI model. 

2. THE TRIAL M A G N E T I Z A T I O N  

A frequently used practical technique for obtaining good 
approximations to functionals of the form (1.4) is the trial function method. 
The task is to guess a function, with several unspecified parameters, that 
has the essential properties of what is expected of the maximal variational 
function. Then the functional is maximized with respect to the unspecified 
parameters. 

To carry out this program in the present case, we begin by presenting 
some particular exact solutions of the stationary condition (1.9). These 
solutions immediately suggest a useful trial magnetization in general. 

2.1. Some Exact Solut ions of a Nonl inear  Integral  Equation 

Consider Eq. (1.9) with the potential (1.10). Define the dimensionless 
temperature 

fl* = fiJ1 (2.1) 

and the parameter 

- J2/J1 (2.2) 

which controls the degree of competition between the ferromagnetic and 
antiferromagnetic couplings. Then, after differentiation, (1.9) becomes 

drn /dx  =/3"[1 - mZ(x)] { (1 + ~c) [m(x + c~)- m ( x  - ~)3 

- tc[m(x + 1 ) - m ( x -  1)3} (2.3) 

Our exact solutions can be divided into three types: 

(i) Solutions of the form 

m ( x ) = k s n ( 4 K ~ p ) s n ( 4 K p x + ( ~ ) ,  p =  [2(1 - c~)] 1 (2.4) 
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where sn is a Jacobian elliptic function, ~6~ with k the modulus and K =  K(k) 
the complete elliptic integral of the first kind. Using the addition formula 

2 cnz  dnz  sn a 
- ( 2 . 5 )  s n ( z + a ) - s n ( z  a ) = l _ k  2sn2zsn2a 

with z = p x + ~  and a = ~ ,  1; noting for the choice o fp  in (2.4) that 

sn(4Kp) = -sn(4K~p) (2.6) 

and using the formula for the derivative 

d 
- -  s n  z = c n  z d n  z ( 2 . 7 )  
dz 

we see that (2.3) is satisfied identically when 

2Kp = fl*(1 + 2~c) sn(4K~p) (2.8) 

(ii) Solutions of the form 

m(x) = k sn(4K~p) sn(4Kpx + ~b), p = 1/2 (2.9) 

In this case re(x)= m(x + 2), so the second difference in (2.3) vanishes. Use 
of (2.5) and (2.6) shows that we require the auxiliary condition 

2Kp = fl*( 1 + ~c) sn(4K~p) (2.10) 

(iii) Solutions of the form 

m(x)=ksn4Kpsn(4Kpx+(~), ~ = 0  (2.11) 

This corresponds to the purely antiferromagnetic case. Clearly, Jl  is an 
irrelevant variable, and we take the dimensionless temperature as 

f l*  = f lJ2  (2.12) 

The first difference in (2.3) vanishes. Again, use of (2.5) and (2.6) shows 
that we require an auxiliary condition 

2Kp = -fl* sn p (2.13) 

Hence, each of (2.4), (2.9), and (2.11) satisfies (2.3) or equivalently (1.9) 
(the latter, with possibly an additive constant on the right-hand side). In 
fact, (t.9) is satisfied exactly, since at x =  -q~/(4Kp) it is simple to show 
that both sides of (1.9) vanish for the solutions (2.4), (2.9), and (2.11), so 
the additive constant is zero. 
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2.2. A Genera l  Ansa tz  

The analytic form of the above exact solutions strongly suggest a trial 
magnetization in general of the form 

m(x) = c sn(4Kpx + ~b) (2.14) 

where c, k, and p are variational parameters and ~b is an arbitrary phase, 
which we will take to be K. In practice, we will use the theta-function form 
of sn, so that 

m(x)=  (03(q)O2(2~px, q)) 
c \02(q)03(2~px, q) 

(2.15) 

The variational parameter k is thus replaced by q, where in the usual 
notation (6) 

q = exp [ - ~K(k)/K(k') ] (2.16) 

With the particular potential (1.10) (and ~ fixed), the exact solutions 
( i )  and (ii) each hold for one value of p only. The amplitude c is given 
explicitly and the variational parameter q is specified in terms of/3* and tc 
by (2.7) or (2.9). For given ~c and fl*, this solution must be substituted in 
(1.6) and compared with the value of (1.6) obtained from (2.14) with other 
values ofp. This allows the optimal magnetization of the form (2.14) to be 
determined, and will give the wavenumber p as a function of x and/3*. In 
this way we can calculate the equations of the lines p(x, f l*)= const in the 
(~c,/3*) plane, which correspond to the global maximum of (1.6). In Sec- 
tion 4 we do this explicitly for low temperatures and find that the exact 
solution (ii) corresponds to a global maximum of (1.6) along a certain 
curve in the (x,/3*) plane, but the exact solution (i) is merely a local rather 
than a global maximum. 

The antiferromagnetic solution is valid for continuous values of p, 
including those wavenumbers between that of the ground state and the 
Lifschitz point. Thus, it only remains to optimize (2.11) with respect to the 
single variational parameter p. We present the results of the numerical 
solution of this problem in Section 5. 

3. L I M I T I N G  F O R M S  OF T H E  T R I A L  M A G N E T I Z A T I O N  

An accurate trial magnetization must display the known behavior near 
the paramagnetic-modulated phase boundary (7'5) and be able to reproduce 
the ferromagnetic solution (see Fig. 1). Here we show that the first of these 
features is contained in (2.15) in the limit q --, 0. For the latter property the 
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/C30,g'- C7" 

Fig. 1. A schematic diagram indicating the three phases typical of mean-field theory with 
competing interactions. As usual, 1//~* denotes the dimensionless temperature and • is a 
measure of the degree of competition between ferromagnetic and antiferromagnetic inter- 
actions within the system. 

relevant variable is log(l/q), or, as is conventional, e,, where q =  e -~ .  We 
show that the ferromagnetic solution is reclaimed from (2.15) in the limit 
e ~ O, p ~ O, pie ~ const. The low-temperature limit is then studied, and 
again log(l/q) is the relevant variable, with the limit corresponding to 
e ~ 0 .  

It is interesting to note that these three limiting forms are of 
prominence in the theory of exactly solvable two-dimensional lattice 
models/s) There the Boltzmann weights on a solvable manifold are 
parametrized in terms of theta functions. The limits then correspond to 
approaching a multicritical point, the boundary between regimes II and III 
(in the notation of ref. 8) and the ground state, respectively. 

3.1. P a r a m a g n e t i c - M o d u l a t e d  Phase Boundary 

We know (7'5) that the critical temperature defining the paramagnetic- 
modulated phase boundary is given by 

L =  1 /K(p*)  (3.1) 
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where p * r  maximizes I7". Furthermore, for a given p, the stationarity 
condition (1.9) permits a unique solution of the form 

where 

m(x)  = ~ an(p, fl) cos[(4n + 2) gpx] 
n = O  

(3.2a) 

an(p, fl) = ~ odn(p)[tiV(p) - 1 ] (2,+ 1)/2 (3.2b) 
l =  n 

To order ( f i / f l , -1 )  3/2, (3.2) maximizes (1.6) when (7) 

1 1 p = p * ;  c~~ = 2, c~ l =2/{3[f i lT"(3p)-  1]}; C~o ~= --2--50~ 1 (3.3) 

To show that the ansatz (2.15) reproduces (3.2), write 

m ( x ) ~ c [ m o ( q ) c o s 2 ~ t p x + m l ( q ) c o s 6 r r p x + m 2 ( q ) c o s  10rtpx + . . .]  (3.4) 

It is simple to check (self-consistently) that to order (~ / f l c -  1)3/2, (1.6) only 
involves cmo(q) , cml(q), and p. Since they are three independent variables, 
and our variational approximation has an expansion of the form (3.4) 
with three independent variables, to this order  we reproduce the general 
expansion. 

3.2. F e r r o m a g n e t i c - M o d u l a t e d  Phase Boundary 

With the ansatz (2.15), it may seem that there is no special limit at the 
ferromagnetic modulated phase boundary--one merely takes p = 0 .  
However, the exact solution in the antiferromagnetic regime (2.11) must 
contain the ferromagnetic solution when J2 is negative. If we simply choose 
p = 0, this would imply m ( x ) =  O. 

As noted in the introduction to this section, with q = e ~, the correct 
limiting form is in fact e ~ 0, p ~ O, pie--* s (constant). By the conjugate 
modulus transformations (6) 

81(z, e ~) - i81(zi /e ,  e '~/~) 92(z, e ~) ~4(zi/E, e -'~/~) 
~4(Z, e -~') 02(zi/~, e -~/~) ' 93(z, e -~') 93(zi/~, e -~/~) 

we then have 
m(x)  ~ c[1 + O(e-~/")3 

and in the antiferromagnetic case (2.11) 

re(x) ~ tanh rcs 

(3.5) 

(3.6) 

(3.7) 
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3.3. L o w - T e m p e r a t u r e  Limit 

In the low-temperature limit we must have Im(x)t ~ 1. With the trial 
magnetization (2.14), this situation is realized in the limit e-o 0, where use 
of (3.5) shows 

cos 2rcxp m(x)~c (3.8) 
Icos 2~xpl 

In order to perform calculations, we seek a tractable form of the 
functional (1.6). Consider first E1 {m(x)} as defined by (1.7). Since re(x) is 
a periodic function of period 1/p, we can write 

m(x )=  ~ Cne 2~zinpx (3.9) 
n ~  - - 0 : 3  

where the cn are the Fourier coefficients. Substituting this form in (1.7) and 
changing the order of the limiting procedures, we have 

EI=~ ~ ~ CmC* lim 1 Im,n(X; M )  (3.10) 

where 

fMfM Im,,(X; M)= dx am V(Ix- yl) e2~ip(mx ny) 
M M 

(3.11) 

Now, in (3.11), change variables x - y  = q, x + y = ~, replace r/by - r /  
for q negative, and r by - ~  for ~ negative, and then replace r by 2 M - ~ ,  
to show that 

Im,,,(x;M)=2 d~cos~p~(m-n) dq V(llll)coszpq(m+n) (3.12) 

If m = n, integration by parts gives 

I.,.(x; M) 4M d~l V(Iql)cos 2~prln 2.  T M  = - d~[~V(l~l) cos 2rcp~n] 
~ 0  

(3.13) 

while for m-r n, again using integration by parts gives 

Im,,(X; M) - 2 f~M 7zp(m-n) dCsinzcp~(m-n)coszcp~(m+n) V(l~l) 

(3.14) 
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The first term in (3.13) is O(M), while the second term is O(1). Also, (3.14) 
is O(1), so the only term remaining after the M-+ oe limit in (3.10) is the 
first term of (3.13). Thus 3 

E,  = ~  = - ~  ICnl 2 17"(pn) (3.15) 

For the choice of magnetization (2.14), using the Fourier expansion of 
sn, (6) we have 

2~c ~ ( - 1 )n qn + 1/2 cos(4n + 2) ztxp 
m(x) = - ~ -  n=o 1 _ q2,+1 

Hence, from (3.9), (3.15), and (3.16) we obtain 

(Trc~ 2 ~ 19(p(2l+ 1)) 
El = ~ \KkJ ,= ~ (q-(,-7 1/2-'3Sq(1+"'-1/2))2 

(3.16) 

(3.17) 

In the low-temperature limit 

Kk ~ rc/2~ + O(e ~/~) (3.18) 

so up to terms O(e -~/~) (assuming corrections to 1 -  c are also of this 
order), as e ~ 0, 

fie2 ~ /?(p(2/+ 1)) (3.19) 
E I ~  t= o~ s inh2ne( l+l /2)  

Next consider the functional (1.8). For any even, antiperiodic function 
m(x) of antiperiod 1/2p, 

E 2 = - dx 1 log 
2 

1-- m(x/4P ) log (.1-- r~x/4p ) ) ] (3.20) 
-~ 2 

From (2.15) and (3.5), for O<~x~ 1/2p, 

1 - e  rc/~ + 4rcxp/~,~ 
m(x)~ ~Te_,~/~+4~xp/~j +o(e -~/~) (3.21) 

3 We thank the referee for pointing out this general formula and sketching its derivation. 
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Substituting (3.21) in (3.20), changing variables x ~ (1 -ex/rc), and noting 
that 

fo ~~ dx log(1 + e - X ) =  ~ __(-1)n+~ _ g2 n z 12 (3.22) 
n=] 

gives the expansion, as e--* 0, 

Ez ~ rre/6 + O(e -"/~) (3.23) 

Hence, with m(x) given by (2.15), up to terms of order e -"/~, 

~-~ fig2 ~ I~(p(2l+ 1)) 1re 
+ - -  (3.24) 

-fl~9 ~ o ~  sinh 2 7r~(l + 1/2) 6 l~--oO 

4. THE W A V E N U M B E R  IN THE L O W - T E M P E R A T U R E  REGIME: 
A Q U A D R A T I C  T H E O R Y  

From Section 3.1 the wavenumber near the paramagnetic-modulated 
phase boundary is given by p*, where p* r 0 maximizes V(p). 

We can calculate p in the low-temperature regime from (3.24). Here 
we do this for the choice of potential (1.10). 

4.1. A Conjugate  Modu lus -Type  Transformat ion  

With the potential (1.10), 

tiV(p) = - -  [(1 + ~c) sin 2zep - ~c sin 27zp] 
7rp 

(4.1) 

Thus, from (3.24) we see that it is necessary to obtain a small-e expansion 
of series of the form 

sin 2rcx(k + 1/2) (4.2) S(x) 
(k + I/2) sinh 2 ~e(k + 1/2) k=--oo 

To do this, we first derive the conjugate modulus-type transformation 

~2 + e k = -oo k cosh zrk/e 
oo 

+ 1 k = ~ '  ~-~ ek 2 2~k(Xcosh r~k/e~/2~/~ I- -el k =~'-~ e 2rck(Xk cosh 2-1/2)/~ rck/esinh rck/~ (4.3) 

where the primes on the summation denote that the k = 0 term is to be 
omitted. The transformation is valid for 0 < x < 1. 
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Consider the contour integral 

fC dz e 2gi(x - 1/2)z 

z cos gz sinh 2 ~ez 
(4.4) 

where the contour C N is a circle of radius N centered on the origin. In the 
limit N--* ~ ,  for I x -  1/2] < 1, this integral is zero. Therefore, the sum of 
residues must be zero. The original series (4.2) results from evaluating the 
residues at z = k +  1/2, while the transformed series (4.3) come from the 
remaining double poles at z = ni/~ (n :~ 0) and the third-order pole at z = 0. 

For 0 < x < 1 the asymptotic behavior is thus 

S(x)~orC( .2 !  2 2 (x-1 /2 )2  ~) G2 "~ O[max(e ~/~, e 2~zx/e, e-2~(x-~)/~)]  

(4.5) 

When x = 1 - v, v/e --* 0, further terms in (4.3) contribute. In this limit the 
three infinite series in (4.3) behave, up to corrections O(e-~/~), as 

2 l o g ( 1 - e  4=v/a), ~2 ~+4rCV log(1--e-4~v/~), --2log(1 - - e  -4~v/~) (4.6) 

respectively. Therefore 

2(x-  1/2)2) (4.7) 
2 ] 

Also of interest is the case 1 < x < 2. From (4.3) 

S(x)= - S ( x -  1) (4.8) 

Since I x -  1[ < 1, we can use (4.3) to conclude 

S ( x ) ~  ,. 2 ~2 (4.9) 

4.2. Quadratic Expressions for the Free Energy 

In each of the cases (i) 0 < p < 1/2, (ii) p = 1/2 - v, v/~ --+ O, and (iii) 
1/2 < p < 1 the free energy is quadratic in the two variational parameters p 
and e [by the periodicity of pI~(p) we can assume p <  1]. From (3.24), 
(4.1), (4.5), (4.7), and (4.9) we have for (i) and (ii) 

- / ~ ' = f l * (  ~zp o t p ~ - ~ a z  ~ ) 
- ~+~,-;-z-z-5,,~+Eo(p, to, ~) (4.10) 
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where Z = l, l + ~c for cases (i) and (ii), respectively, and 

Eo(p, r c , ~ ) = p [ 2 ~ - 2 ~ 2 ( l + ~ ) ] + ( - ; c + ~ + ~ o O  (4.11) 

while for (iii), assuming further that p7 < 1/2, 

--fllp---fl*( e2(l+2K)12p ~-6(-~7ce +Eo(p ,K ,  2))  (4.12) 

where 

E o ( p , K , ~ ) = ( l + ~ c ) ( - - 2 . 2 p + . ) + ~ c ( - - 2 p + 3 - - 1 / p )  (4.13) 

Maximizing with respect to e gives for (i) and (ii) 

e = 7rp/(fl*Z) (4.14) 

- flO = fl* {rc2p/[12(fl*)2)~] + Eo(p, to, ~)} (4.15) 

while for (iii) 

e = top~Eft*(1 + 2•)] 

- ~ t p =  fi*{Tt2p/[12(~*)2(1 + 2~:)] + Eo(p, ~:, ~)} 
(4.16) 

4.3. The  Ground  Sta tes  

For given ~ and ~: we will first consider the maximization of the 
negative of the ground state-energy Eo with respect to p. From (4.11) and 
(4.13), the following results are evident. 

Suppose 

/C < ~2/(1 -- ~2) (4.17) 

Then we have the ferromagnetic ground state p = 0. If 

~c -- ~2/(1 - ~ 2 )  (4.18) 

then all wavenumbers 0 ~< p ~< 1/2 correspond to the ground state. If 

tc > ~2/(1 - ~2) (4.19) 

then the ground-state wavenumber is 

p = [2 + 2~2(1 + ~c)/~] 1/2 (4.20) 

[note that this is consistent with the condition c~p< 1/2 used in the 
derivation of (4.12)]. 
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Thus, the largest wavenumber occurs when ~c ~ oo and 

p = (2 + 2e2) -1/2 (4.21) 

In particular, for all x and 

p <  [ 2 ( 1 - c 0 ]  i (4.22) 

and so the exact solution (2.4), which has wavenumber [ 2 ( 1 -  e ) ] - l ,  does 
not maximize the functional (1.6) in the low-temperature limit. On the 
other hand, for all c~, the exact solution (2.9), which has wavenumber 1/2, 
corresponds to a minimum of the ground-state energy. 

4.4. Var ia t ion of the W a v e n u m b e r  w i th  Tempera tu re  

Consider now the quadratic low-temperature expansions (4.15) and 
(4.16). We first determine the destabilization of the ferromagnetic phase in 
the (K, fl*) plane. From (4.15) this occurs when 

0~ 2 l.g 2 

K> 1 - e 2  24(/~,)2(1_c~2 ) (4.23) 

In fact, since (4.15) is linear in p, the maximal wavenumber is p ~ 1/2 [for 
(4.16) to be valid we require 1/2-p>O(1/fl*)]. Thus, to order 
exp(-2c~fl*), which is the lowest order correction ignored in (4.15), the 
wavenumber is discontinuous across the ferromagnetic-modulated phase 
boundary. If such corrections were included in the free energy, we would 
expect the degeneracy to be removed, but the width of the variation from 
p = 0 to ~ 1/2 to be exponentially small. 

A bound on the boundary of the region for which p <  1/2 can be 
calculated from (4.15) with )~= 1 +K. We have p <  1/2 as the maximal 
wavenumber when, to order 1/(3") 2, 

~2 7[2 

K~< 1 - ~ 2  24(//,)2 (4.24) 

To complete the 
consider the region 

0~2 ~2  

1 - a  z 24(fl*) 2 

Then from (4.16) the maximal wavenumber is 

p=~l/2 2~+2~2(1 +~c) -  12(fl,)2( 1 +2K) 

phase diagram in the low-temperature regime, 

(4.25) 

-- 1/2 

(4.26) 
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P T > O  

T = O  

Fig. 2. A schematic diagram showing the wavenumber as a function of K for the potential 
(1.10) at zero and nonzero temperature. 

Thus, the lines of constant p in the (x,/~*) plane, for p >  1/2, are given by 

(1) 
~ c = 2 ( e Z + l ) p 2 _  1 24(/~,)---------~+O ~ (4.27) 

A schematic summary of these results is given in Fig. 2. 

5. THE M O D U L A T E D  R E G I M E  FOR THE PURELY 
A N T I F E R R O M A G N E T I C  I N T E R A C T I O N  

When ~ = 0 in (1.10) we have the purely antiferromagnetic interaction 

J - J 2 ,  lxl ~ 1 
V(x) (5.1) 

~0, Ixl > 1 

From Section 2.1, with the dimensionless temperature defined by (2.12), 
the trial magnetization 

~1(2~p, q) 92(2zpx, q) 
re(x) = (5.2) 

~14(2~zp, q) l)3(2rtpx, q) 

with q specified by 

fl*~ 1 (27"cp, q) 
~P= 92(q) 93(q) ~4(2~P, q) (5.3) 

satisfies the stationarity condition (1.9) exactly. Thus, the only independent 
variational parameter is p. 

822/51/3-4-14 
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The wavenumber at the Lifschitz point is given by the first maximum 
of 

t iV(p) = - f l*(s in  2np)/ztp (5.4) 

which occurs when 

p - p *  -~ 0.7152 (5.5) 

and the critical temperature is 

1~fit* = - ( s i n  2rcp*)/rcp* ~- 0.4344 (5.6) 

In the low-temperature region, minor modification to the working in 
Section 4 shows that, to order 

e ~/~ with e=Trp/fl* (5.7) 

the maximal wavenumber is 

p = [ 2 -  (Tt2/24fl*2)] v2 (5.8) 

In particular, at zero temperature 

p = 1 / . ,~  ~- 0.7071 (5.9) 

Thus, as the temperature is increased from zero to the critical value (5.6), 
the wavenumber increases from 0.7071 to 0.7152, a change in the second 
decimal place only. 

To calculate the variation of the wavenumber as a function of tem- 
perature numerically, we make use of the analytic result (5.8). From (5.7) 
we would expect (5.8) to be accurate to three decimal places (at least) for 
temperatures less than lift* = 1/10, since corrections to the free energy are 
of order 10 -7 or less. As lift* is increased, the trial value o f p  is obtained 
from quadratic extrapolation, and the value of q calculated from (5.3) 

P 
.71E 

.711 

-707( 

J 

Fig. 3. A plot of the wavenumber as a function of the dimensionless temperature lift* for 
the purely antiferromagnetic potential (5.1). 
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using the Newton Raphson formula. Since q < e x p ( - r c x / 2 / 1 0 ) - ~ 0 . 6 4 ,  
accurate approximations to the theta functions can be obtained by 
including only the first few terms of the series expansion. The value of the 
functional (1.6) is then calculated, and the procedure repeated with 1//?* 
fixed but other values of p until the maximal value is found. The results of 
the calculation are displayed in Fig. 3. 

6. C O N C L U S I O N  A N D  C O N T R A S T  W I T H  THE A N N N I  M O D E L  

As a trial magnetization to well describe the modulated regime of the 
exact mean-field theory of competing interactions, we have proposed an 
elliptic function ansatz (2.14) with the amplitude, modulus, and period as 
variational parameters. For  a particular choice of potential (1.i0), which is 
an obvious continuous version of the ANNNI model between plane 
interaction, we have studied the equations analytically in the low- 
temperature regime. 

At zero temperature, there is a particular choice of interaction 
parameters (4.18) for which all wavenumbers from 0 to 1/2 correspond to 
the ground state. As the strength of the competition is increased above this 
value, the ground-state wavenumber varies smoothly with the interaction 
parameters. At nonzero temperature the degeneracy is removed, and the 
wavenumber is a smooth function of the interaction parameters. 

The ground state of the ANNNI model also has a multiphase point 
(~c= 1/2) at which a countably infinite sequence of phases coexist. (4) 
However, for x > 1/2 the ground state sticks to the (2)phase.  At low tem- 
perature the (2 )phase  remains stable, but the multiphase point gives rise 
to a complex wedge of commensurate phases. 

The basic mechanism for the existence of the commensurate phases in 
the ANNNI model is well known: it is a coupling phenomena with the 
underlying lattice. In the continuous case there is no underlying lattice. Not  
surprisingly, then, we have provided evidence in a particular case, and 
would expect in general, that for nonzero temperatures the wavenumber is 
a smooth function of the temperature and interaction parameters. 
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